

Stanley Crook Primary School

Wooley Terrace, Stanley Crook, Co. Durham, DL15 9SF Tel: (01388) 762858

Headteacher: Mrs M. Norris

E-mail: stanleycrook@durhamlearning.net Web site: www.stanleycrook.durham.sch.uk

OUR MISSION: TO TRY OUR BEST, TO TELL THE TRUTH, TO LOOK AFTER EACH OTHER AND THE COMMUNITY

"Pupils' personal development, behaviour and welfare is OUTSTANDING" (Ofsted, 2019)

Mathematics Policy

Completed by: Mrs R Wilkinson

Date Implemented: September 2025

Review date: September 2026

Stanley Crook Primary School is committed to improving outcomes for all pupils

Mathematics Policy – Contents

- 1. Vision and Curriculum Values
- 2. Curriculum Intent and Mastery Approach
- 3. Teaching Principles

Implementation

- 4. Lesson Design
- 5. Classroom Norms

6. Assessment

- Formative Assessment
- Summative Assessment
- o Progression and Moderation Frameworks
- o Feedback and Pupil Response
- Pupil Reflection and Self-Assessment
- Moderation and Consistency of Judgements

7. EYFS Provision

- o Curriculum Guidance and Intent
- o Mastery in the Early Years
- o Planning and Resources
- EYFS Parental Engagement

8. Inclusion and SEND

- Adaptive Teaching for All
- Inclusive Questioning and Challenge
- o Challenge and Greater Depth

9. Progression and Fluency

- o Core Teaching Commitment
- o Times Tables and Recall
- Active and Outdoor Maths
- Real-Life Application
- o Transition and Enrichment

10. Resources and Technology

- Concrete Resources
- o Planning and Professional Resources
- o Information and Communication Technology (ICT)

11. Role of the Subject Leader

- Leadership and Curriculum Expertise
- Professional Development and Coaching
- o Monitoring and Evaluation

- o Personal Development and Research
- o Communication and Collaboration
- o Policy and Strategic Oversight

12. Home Learning and Parental Engagement

- o Home Learning Approach
- Supporting Fluency at Home
- o Communication with Parents
- o Real-Life Application
- 13. Impact
- 14. Cross-Curricular Links
- 15. Policy Review and Evaluation

Mathematics Policy

1. Vision and Curriculum Values

Purpose

This policy has been developed to ensure that the teaching of mathematics contributes meaningfully to the fulfilment of Stanley Crook Primary School's vision and curriculum values. It sets out the principles, practices and expectations that underpin high-quality mathematics provision across the school.

School Vision

"Stanley Crook Primary School is committed to improving outcomes for all pupils through delivering a curriculum which is dynamic, fun and meaningful in a safe, secure and stimulating learning environment with high standards and expectations. We are passionate about developing lifelong skills, which will enable all pupils to be resilient, respectful, independent and successful citizens of the future."

Mathematics plays a vital role in achieving this vision by equipping pupils with the tools to reason, solve problems and think creatively and critically. Through our mastery approach, we aim to foster confidence, independence and a lifelong enthusiasm for mathematical learning.

Curriculum Values Embedded in Mathematics

The teaching of mathematics is underpinned by all four of the school's curriculum values:

- Aspirations We aim to provide experiences that show children the wide range of
 possibilities available for their future. Real-world contexts such as budgeting, data
 handling and environmental modelling help pupils see mathematics as a tool for
 opportunity and empowerment.
- **Initiative** We aim to offer experiences that help pupils become independent and resourceful learners. Lessons are designed to encourage exploration, resilience and ownership of learning through problem solving and mathematical talk.
- **Environment** We aim to provide experiences that help pupils value their environment and understand their responsibilities towards sustaining their local and global surroundings. Contextual tasks such as analysing recycling data or exploring climate statistics promote responsibility and informed decision-making.
- Community We aim to provide experiences that help pupils understand the importance of collaboration, shared responsibility and active participation in their school and wider community. Mathematics is used to foster teamwork, celebrate collective achievement, and solve real-life problems that matter to our pupils from organising charity events and managing budgets to interpreting data that reflects pupil voice and local priorities.

Linked Policies

This policy should be read in conjunction with the following school policies to ensure consistency and coherence across teaching and learning:

- Calculation Policy
- Curriculum Policy
- Assessment Policy
- Marking and Feedback Policy
- Special Needs Policy

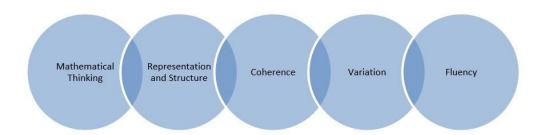
2. Curriculum Intent and Mastery Approach

At Stanley Crook Primary School, our mathematics curriculum is designed to ensure that all pupils develop a deep, secure, and adaptable understanding of mathematical concepts. We are committed to providing a coherent and ambitious curriculum that enables every child to succeed, regardless of background or starting point.

Curriculum Intent

We aim to:

- Foster a positive attitude towards mathematics and build confident, resilient learners
- Ensure all pupils achieve mastery of key concepts appropriate to their age group
- Provide a coherent, well-sequenced curriculum that supports progression from EYFS to Year 6
- Embed fluency, reasoning, and problem solving across all strands of mathematics
- Promote inclusion and equity through adaptive teaching and high expectations for all
- Equip pupils with the mathematical knowledge and skills they need for life beyond primary school


Mathematics equips pupils with a uniquely powerful set of tools to understand and change the world. These tools include logical reasoning, problem solving, and the ability to think in abstract and creative ways. We strive to ensure that pupils develop a lifelong enthusiasm for mathematics and see it as meaningful, relevant, and empowering.

Teaching for Mastery: The Five Big Ideas

Our approach is underpinned by the NCETM's Five Big Ideas in Teaching for Mastery. These principles shape lesson design, questioning, progression, and assessment across the school:

- **Mathematical Thinking** Pupils are encouraged to reason, justify, and make connections. They engage in rich discussions and explore multiple strategies, building chains of reasoning that deepen understanding.
- **Representation and Structure** Concepts are introduced and explored through consistent use of concrete, pictorial, and abstract representations (CPA). Pupils learn to recognise patterns, make generalisations, and internalise mathematical structures.
- **Coherence** Lessons are carefully sequenced in small, connected steps. Each question and activity builds on prior learning, ensuring that new content is introduced in a logical and accessible way.
- Variation Teachers use:
 - Conceptual variation to show what a concept is and is not, using standard and non-standard examples to expose misconceptions
 - Procedural variation to present different methods and representations, highlighting essential features and promoting flexible thinking
- **Fluency** There is a relentless focus on number facts, times tables, and efficient calculation strategies. Fluency is developed through intelligent practice, enabling pupils to apply knowledge with accuracy and confidence.

These principles are embedded throughout our teaching, planning, and assessment practices. They are referenced in lesson design (Section 4), assessment (Section 8), and progression and fluency (Section 12).

Implementation

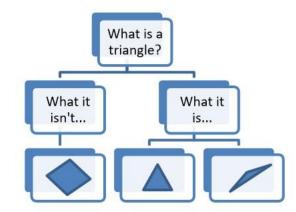
3. Teaching Principles

At Stanley Crook Primary School, our teaching of mathematics is guided by a set of core principles that reflect our belief in inclusive, high-quality learning for all pupils. These principles ensure that every child is supported to develop deep understanding, mathematical confidence and the ability to reason and problem solve effectively.

Core Beliefs and Practices

- All pupils can succeed in mathematics Teachers believe in the importance of mathematics and that
 the vast majority of children can achieve national expectations when supported through high-quality
 teaching and a coherent curriculum.
- Whole-class teaching with scaffolding and rapid intervention All pupils are taught together, with no grouping by ability or acceleration to new content. Individual learning needs are met through careful scaffolding, targeted questioning and timely intervention to provide appropriate support and challenge.
- **Emphasis on reasoning, efficiency, and strategy** Pupils are encouraged to explain how they arrived at an answer, why a method works and which strategy is most efficient. Teacher-pupil dialogue focuses on deepening understanding and developing mathematical thinking.
- Use of precise mathematical language and full sentences Teachers model and expect the use of accurate mathematical vocabulary spoken in full sentences. 'Mathematical talk' is valued, and pupils are given regular opportunities to articulate and evaluate their thinking.
- Extensive use of variation to deepen understanding Both conceptual and procedural variation are used throughout teaching to promote deep, sustainable learning. Variation is purposeful and focused not simply variety for its own sake.
- **Sufficient time spent on key concepts** Teachers ensure that pupils have ample time to explore and embed key ideas before moving on. This supports long-term retention and enables pupils to build secure foundations for future learning.

4. Lesson Design


At Stanley Crook Primary School, mathematics lessons are designed to be sharply focused, cognitively rich, and inclusive of all learners. Our implementation of the mastery approach is embedded in every aspect of lesson design, ensuring that all pupils develop deep understanding, fluency, and confidence over time.

Lesson Structure

- **Short but intense input** Teacher-led input typically lasts around 30 minutes, allowing ample time for independent practice. During this time, teachers deliver core content, model strategies, and address misconceptions.
- **Independent practice with challenge** Pupils engage in reasoning, problem solving, and higher-order thinking activities. Teachers remain available to provide same-day intervention and guided support where needed.
- One new objective per lesson Lessons are tightly focused, introducing one new concept at a time to ensure clarity and depth.
- Pre-planned misconceptions and key questions Teachers anticipate difficult points and plan strategies to address them. Key questions are carefully crafted to challenge thinking and support progression for all pupils.
- Interleaved discussion and pupil collaboration Teacher-led discussion is interspersed with short tasks involving pupil-to-pupil dialogue and collaborative activities. This supports mathematical talk, peer reasoning, and shared problem solving.

Lesson Features

- **High-quality resources** Teachers use a range of carefully selected materials to support access and deepen understanding, including:
 - NRICH tasks
 - NCETM Mastery Assessment materials
 - NCETM Professional Development resources
 - White Rose Maths schemes and activities
- CPA interchange and abstract representation Lessons regularly move between concrete, pictorial, and abstract representations. This supports conceptual development and helps pupils make connections between models and symbols.
- **Use of comparison to develop deep knowledge** Pupils are encouraged to explore similarities and differences between concepts. The question "What's the same? What's different?" is used to draw attention to essential features and promote critical thinking.

• **Embedded formative assessment** Teachers regularly check pupils' understanding through questioning, observation, and analysis of pupil responses. Lessons are adjusted in real time to address gaps and extend learning. This responsive approach is a key feature of the mastery learning process.

Implementation in Practice

Our mastery approach is implemented through:

- Daily mathematics lessons (4–5 per week) and regular fluency sessions (e.g. Fluency Bee, Times Table Rockstars)
- Carefully sequenced small steps, with one new objective per lesson to support progression and retention
- **Inclusive strategies** such as pre-teaching, guided support, and same-day intervention to ensure all pupils can access the curriculum
- A strong focus on mathematical talk, comparison, and conceptual understanding, supported by structured questioning and collaborative reasoning
- Integration of maths into outdoor learning, real-life contexts, and cross-curricular opportunities, including Active Maths, environmental data collection, and enterprise projects
- Ongoing CPD, lesson study, and coaching led by the subject leader to support high-quality teaching and curriculum consistency
- Regular monitoring, data analysis, and policy review to evaluate impact and inform continuous improvement

This integrated approach ensures that lesson design is not only theoretically sound but also practically effective, enabling all pupils to thrive in mathematics.

5. Classroom Norms

At Stanley Crook Primary School, we establish and reinforce a set of classroom norms that reflect our belief in inclusive, growth-oriented mathematics learning. These norms are explicitly taught, modelled and revisited throughout the year to foster a positive mathematical culture and support pupils in becoming confident, reflective learners.

Norms We Live By

- 1. **Everyone can learn mathematics to the highest levels** We believe that all pupils are capable of achieving success in mathematics when supported through high-quality teaching and a coherent curriculum.
- 2. **If you 'can't do it', you 'can't do it yet'** We promote a growth mindset by encouraging pupils to see learning as a journey. Struggle is part of progress.
- 3. **Mistakes are valuable** Mistakes are celebrated as learning opportunities. Pupils are supported to analyse errors, reflect on misconceptions, and build resilience.
- 4. **Questions are important** Pupils are encouraged to ask questions, challenge ideas, and explore alternative strategies. Curiosity drives deeper understanding.
- 5. **Mathematics is about creativity and problem solving** We value flexible thinking, multiple approaches, and imaginative reasoning. Pupils are given opportunities to explore, investigate, and create.
- 6. **Mathematics is about making connections and communicating what we think** Pupils are supported to make links between concepts and to express their reasoning clearly. Mathematical talk is a key feature of every lesson.
- 7. **Depth is much more important than speed** We prioritise deep understanding over rapid completion. Pupils are encouraged to think carefully, explain their reasoning and explore ideas thoroughly.
- 8. **Maths lessons are about learning, not performing** Our classrooms are safe spaces for exploration and growth. Pupils are not expected to have all the answers they are expected to engage, reflect, and learn.

6. Assessment

Assessment in mathematics at Stanley Crook Primary School is designed to be purposeful, responsive, and closely aligned with our mastery approach. It informs planning, supports pupil progress and ensures that gaps in understanding are identified and addressed swiftly.

Formative Assessment

Formative assessment is embedded throughout daily teaching and learning. Teachers use a range of strategies to monitor pupil understanding and adapt instruction in real time:

- Regular tasks to probe conceptual understanding
- In-class questioning to elicit reasoning and identify misconceptions
- Analysis of pupil work to inform next steps
- Tailored fluency checks to assess number fact recall and procedural efficiency
- Use of White Rose tasks to support gap analysis and planning
- End-of-unit White Rose assessments are used to evaluate understanding of specific topics and guide future teaching

This ongoing assessment process ensures that pupils receive timely support and challenge, and that teaching remains responsive to their needs.

Summative Assessment

Summative assessment is used to evaluate pupil attainment against National Curriculum objectives and to inform reporting and transition:

- Pupils are teacher-assessed against year group objectives using the National Curriculum
- Judgements are recorded in Arbor to support tracking and analysis
- Termly summative assessments are used to monitor progress across the year and identify pupils requiring additional support or challenge
- National Curriculum tests are administered at the end of Key Stage 1 and Key Stage 2
- Teachers use past and sample papers to prepare pupils and inform their assessments

Summative data is used to monitor progress, identify trends and support whole-school improvement in mathematics.

Progression and Moderation Frameworks In addition to Arbor tracking and summative assessments, teachers use progression grids and assessment frameworks to support consistent judgements across year groups. These tools provide clear descriptors for age-related expectations and enable staff to moderate pupil work

with confidence. Progression grids are referenced during planning, pupil conferencing and work scrutiny, ensuring that assessment is closely aligned with curriculum intent and supports coherent development from EYFS to Year 6.

Feedback and Pupil Response

High-quality feedback is a key component of assessment practice. In line with the school's **Assessment Policy** and **Marking and Feedback Policy**, teachers provide:

- Clear, actionable feedback that supports pupil reflection and improvement
- Opportunities for pupils to respond to feedback and correct misconceptions
- Praise and next steps that reinforce effort, progress, and mathematical thinking

Feedback is designed to be meaningful, manageable, and focused on learning — not performance.

Pupil Reflection and Self-Assessment

Pupils are supported to reflect on their mathematical learning through structured prompts, fluency targets, and goal-setting activities. Teachers encourage self-assessment during feedback response time, helping pupils identify strengths, articulate next steps, and take ownership of their progress. This reflective practice reinforces growth mindset principles and deepens metacognitive awareness.

Moderation and Consistency of Judgements

To ensure consistency and accuracy in assessment, teachers engage in regular moderation of pupil work across year groups. These sessions support professional dialogue, refine teacher judgement and align assessment with progression frameworks and National Curriculum expectations. Where appropriate, external moderation and collaboration with local schools are used to validate standards and share best practice.

7. EYFS Provision

At Stanley Crook Primary School, our approach to mathematics in the Early Years Foundation Stage (EYFS) is grounded in the principles of mastery and early conceptual development. We recognise that a secure foundation in number sense is essential for long-term mathematical success.

Curriculum Guidance and Intent

We follow the **EYFS curriculum guidance for Mathematics**, ensuring that all children experience a broad, balanced, and developmentally appropriate introduction to mathematical learning. Our provision is designed to:

- Build confidence and enjoyment in early mathematics
- Develop secure understanding of number, pattern, shape, space, and measure
- Prepare pupils for a smooth transition into Key Stage 1

Mastery in the Early Years

We are committed to ensuring the confident development of number sense and place a strong emphasis on the mastery of key early concepts. Our approach includes:

- Exploring the 'story' of numbers to ten, helping children understand number composition, comparison and relationships
- Using models and images to build deep conceptual understanding
- Applying the concrete-pictorial-abstract (CPA) approach to support progression and representation
- Embedding mathematical talk and reasoning into daily routines and play-based learning

Planning and Resources

Teachers plan using high-quality, research-informed resources, including:

- NCETM Numberblocks episodes and guidance, which provide engaging, structured opportunities to explore number concepts
- White Rose Maths EYFS materials, used as a basis for sequencing learning and ensuring progression
- Carefully selected manipulatives and visual aids to support exploration, pattern spotting, and problem solving

EYFS Parental Engagement

In the Early Years, families play a vital role in developing early number sense and mathematical confidence. Parents are encouraged to engage in everyday counting routines, explore shape and pattern through play, and use familiar contexts to reinforce number concepts. Resources such as *Numberblocks* episodes and home activity guides are shared to support structured exploration and mathematical talk at home. This partnership helps lay strong foundations for future learning and fosters a positive attitude towards mathematics from the very beginning.

Our EYFS mathematics provision lays the groundwork for future success by nurturing curiosity, confidence and a deep understanding of number from the very beginning.

8. Inclusion and SEND

At Stanley Crook Primary School, we are committed to ensuring that all pupils — regardless of background, need, or starting point — have access to high-quality mathematics teaching and meaningful opportunities to succeed. Our inclusive approach is rooted in the principles of adaptive teaching and mastery.

Adaptive Teaching for All

We use an adaptive teaching approach in mathematics, where all children are exposed to the same curriculum content and learning opportunities. Differentiation is achieved through support, scaffolding and challenge — not through narrowing expectations or limiting access.

Key strategies include:

- **Precision teaching** for key facts and fluency
- Pre-teaching of new concepts to build confidence and readiness
- Guided support during lessons to reinforce understanding
- Same-day intervention to revisit and consolidate new learning
- Carefully planned small steps to help all pupils make connections and build secure understanding

This approach ensures that pupils are supported to keep up, not catch up, and that learning remains inclusive, ambitious, and coherent.

Inclusive Questioning and Challenge

We employ a **'low threshold, high ceiling' questioning approach**, which allows all pupils to access the same questions while responding at different levels of depth and complexity. This supports inclusive participation, encourages mathematical reasoning, and provides opportunities for pupils to extend their thinking.

Teachers use targeted questioning, visual prompts and structured talk to ensure that every pupil is engaged, challenged, and supported throughout the lesson.

Challenge and Greater Depth

In line with our 'low threshold, high ceiling' approach, pupils who grasp concepts quickly are provided with additional challenges that extend and deepen their thinking. These include open-ended tasks and NRICH investigations that promote flexible strategy use and abstract reasoning. Fast finishers are encouraged to explore alternative methods, justify solutions and make connections across mathematical domains. This ensures that all pupils remain engaged, stretched, and supported to achieve greater depth within the same curriculum content.

9. Progression and Fluency

Progression and fluency are developed in line with our mastery approach (see Section 2), with carefully sequenced small steps, regular fluency sessions, and opportunities to revisit and deepen understanding.

Core Teaching Commitment

- Mathematics is taught 4–5 times per week across all year groups, ensuring consistent exposure and sustained progress.
- Fluency Bee sessions are delivered:
 - o Daily for Years 1–4
 - o Three times weekly for Years 5–6
- These sessions focus on number facts, times tables, and efficient calculation strategies, supporting automaticity and confidence.

Times Tables and Recall

- Pupils regularly practise multiplication facts through:
 - Times Table Rockstars
 - o Tailored fluency checks
 - o Targeted interventions for pupils requiring additional support
- Teachers use diagnostic tools to identify gaps and plan precision teaching where needed.

Active and Outdoor Maths

- Teachers plan opportunities for Active Maths, using movement-based tasks to reinforce fluency and engagement.
- Outdoor learning is used to embed maths in real-world contexts, including:
 - Maths trails
 - Forest School activities
 - o Environmental data collection and analysis

Real-Life Application

- Pupils apply maths in everyday situations, such as:
 - Using money at the school tuck shop
 - o Budgeting for events or enterprise projects
 - o Interpreting data linked to pupil voice or local issues

Transition and Enrichment

- Links with local secondary schools provide enrichment opportunities for Years 5 and 6, including:
 - Collaborative projects
 - Transition activities
 - o Specialist-led sessions to extend mathematical thinking

This layered approach to fluency and progression ensures that pupils build secure foundations, develop confidence, and are well prepared for the next stage of their mathematical journey.

10. Resources and Technology

At Stanley Crook Primary School, we ensure that all classrooms are equipped with high-quality resources and digital tools to support effective mathematics teaching and learning. Our provision reflects our commitment to mastery, accessibility, and engagement.

Concrete Resources

Each classroom maintains a bank of essential mathematics manipulatives to support conceptual understanding and the CPA (Concrete–Pictorial–Abstract) approach. These include:

Numicon

- Place value counters
- Tens frames
- Cuisenaire rods
- Base 10 (Dienes blocks)
- Number lines and bead strings

Additional resources linked to whole-school focus areas are stored centrally in corridor cupboards for shared access.

- Digit cards and arrow cards
- Fraction walls, strips and magnetic fraction circles
- Decimal grids and counters
- Geoboards and elastic bands
- Tangrams and pattern blocks
- Unifix cubes and linking cubes
- Balance scales and weights
- Measuring tapes, trundle wheels and metre sticks
- Sorting hoops, Carroll and Venn diagrams
- Tally charts, pictogram templates, spinners, dice and counters

These manipulatives support variation, reasoning and deep exploration of mathematical structures across year groups.

Planning and Professional Resources

Teachers have access to a shared drive containing:

- Planning guidance and progression materials
- NCETM and White Rose resources
- Assessment tools and fluency frameworks
- CPD materials and exemplars of best practice

This centralised system supports consistency, collaboration and curriculum coherence across the school.

Information and Communication Technology (ICT)

ICT is used to enhance teaching, motivate learners, and provide interactive opportunities for exploration and fluency. Teachers are encouraged to integrate technology where appropriate to support modelling, fluency practice, and pupil engagement. Digital tools are used to reinforce key concepts, provide immediate feedback and extend learning beyond the classroom.

11. Role of the Subject Leader

The mathematics subject leader at Stanley Crook Primary School plays a pivotal role in driving high standards, supporting staff development and ensuring that all pupils receive a high-quality mathematics education. The role is strategic, collaborative and rooted in the principles of mastery and inclusion.

Leadership and Curriculum Expertise

- Ensures that teachers understand the requirements of the National Curriculum for mathematics
- Supports staff in planning coherent, mastery-aligned lessons
- Leads by example through high-quality teaching and modelling best practice

Professional Development and Coaching

- Leads continuing professional development and learning (CPDL) for staff
- Facilitates joint professional development, including collaborative planning
- Provides coaching and feedback to improve pupil outcomes and teacher confidence

Monitoring and Evaluation

- Oversees whole-school monitoring of mathematics teaching and learning through:
 - o Regular lesson observations
 - o Analysis of assessment data to inform school improvement
 - Work scrutiny to evaluate progress and consistency
 - o Pupil interviews to gather insight into learning experiences

Personal Development and Research

- Takes responsibility for their own professional development through:
 - o Participation in external training and Maths network events
 - o Independent study and engagement with educational research
 - o Reading to stay informed of best practice and curriculum developments

Communication and Collaboration

- Keeps parents informed about mathematics teaching, learning and support strategies
- Ensures that senior leaders and governors are regularly updated on the quality of provision and pupil outcomes
- Works in close partnership with the SENDCo to ensure that the needs of all learners are met effectively

Policy and Strategic Oversight

- Reviews and updates the school's mathematics policy to reflect current practice, national guidance, and school priorities
- Ensures alignment between mathematics provision and whole-school curriculum values.

12. Home Learning and Parental Engagement

At Stanley Crook Primary School, we recognise that strong home-school partnerships play a vital role in supporting pupil progress in mathematics. We aim to foster positive attitudes, reinforce fluency and promote real-life application through meaningful engagement with families.

Home Learning Approach

- Home learning tasks are designed to reinforce key concepts, support fluency and encourage mathematical thinking beyond the classroom.
- Activities are purposeful, manageable and aligned with current learning objectives.
- Tasks are adapted where necessary to ensure accessibility and reinforce key learning for all pupils, including those with additional needs. This includes tailored fluency grids, scaffolded reasoning challenges and differentiated online platforms.
- Pupils may be given tasks such as:
 - o Times table practice
 - Reasoning challenges
 - o Real-life maths applications (e.g. budgeting, measuring, data collection)
 - o Online fluency games and platforms

Supporting Fluency at Home

- Families are encouraged to support regular practice of number facts and times tables.
- Pupils access platforms such as Times Table Rockstars to build speed and accuracy.
- Teachers may provide tailored fluency grids or recall challenges to support individual needs.

Communication with Parents

- The subject leader and class teachers keep parents informed about mathematics teaching and learning through:
 - o Parent workshops and information sessions

- Updates on fluency focus areas and home learning expectations
- Parents are encouraged to celebrate progress, ask questions and engage in mathematical talk with their children.

Real-Life Application

- Pupils are encouraged to apply maths in everyday contexts at home, such as:
 - Using money at the school tuck shop
 - o Measuring ingredients for cooking
 - o Planning journeys or interpreting timetables
 - o Collecting and analysing data for family surveys or projects

This collaborative approach helps pupils see mathematics as meaningful, relevant and empowering — both in school and at home.

13. Impact

As a result of our approach:

- Pupils develop secure number sense, fluency, and confidence in applying mathematical knowledge
- Gaps in understanding are identified early and addressed through timely intervention
- All pupils, including those with SEND, are supported to access the full curriculum
- Pupils demonstrate resilience, curiosity, and a willingness to explore and explain their thinking
- Outcomes in mathematics are strong, with pupils well prepared for the next stage of education
- Teachers feel confident in delivering high-quality maths lessons and adapting provision to meet need
- Parents are engaged in supporting fluency and mathematical thinking at home
- The school's mathematics provision is consistent, inclusive, and aligned with national expectations

14. Cross-Curricular Links

At Stanley Crook Primary School, we recognise that mathematics is not a standalone subject but a powerful tool for understanding and engaging with the wider curriculum. We actively promote cross-curricular links to deepen understanding, enhance relevance and foster transferable skills.

Key Cross-Curricular Connections:

- **Science**: Pupils apply measurement, data handling and graphing skills in investigations, experiments and analysis of results (e.g. measuring temperature, recording growth, interpreting results).
- **Geography**: Map reading, scale, coordinates and data interpretation are embedded in fieldwork and environmental studies (e.g. rainfall charts, population graphs, climate comparisons).
- **Design and Technology (DT)**: Pupils use measurement, estimation, and geometry in designing, building and evaluating products (e.g. measuring materials, calculating area/perimeter, scaling recipes).
- **Art**: Symmetry, pattern, shape and proportion are explored through creative projects (e.g. tessellation, geometric art, perspective drawing).
- History: Timelines, chronology and data interpretation support historical enquiry (e.g. comparing population data, analysing timelines, exploring historical currency).
- **Computing**: Pupils use spreadsheets, coding logic and algorithms to model mathematical processes and analyse data.
- Physical Education (PE): Pupils apply counting, timing, measuring and data collection in games, athletics, and fitness tracking.
- **PSHE and Citizenship**: Financial literacy is developed through budgeting, enterprise projects and real-life problem solving (e.g. managing a tuck shop, planning charity events).

These links are planned and purposeful, ensuring that mathematical knowledge is reinforced and extended across subjects. Teachers collaborate to identify opportunities for integration and pupils are encouraged to recognise and articulate how mathematical thinking supports learning in other areas.

15. Policy Review and Evaluation

At Stanley Crook Primary School, the mathematics policy is a living document that evolves in response to national guidance, school priorities, and pupil needs. Regular review and evaluation ensure that our provision remains high quality, inclusive and aligned with our mastery approach.

Review Cycle and Oversight

- The mathematics subject leader is responsible for keeping the policy under review and ensuring it reflects current practice, research, and statutory requirements.
- The policy is reviewed annually or sooner if significant changes to curriculum guidance or school priorities occur.
- Updates are shared with senior leaders and governors, who are kept informed about the quality of teaching and learning in mathematics.

Evaluation of Impact

Evaluation is embedded in whole-school monitoring processes and includes:

- Lesson observations to assess consistency, pedagogy, and pupil engagement
- Work scrutiny to evaluate progression, feedback, and depth of understanding
- Pupil interviews to gather insight into learning experiences and attitudes
- Assessment data analysis to identify trends, gaps, and areas for improvement
- Staff feedback to inform CPD planning and resource development

This reflective cycle ensures that the mathematics policy remains purposeful, practical and responsive to the needs of our pupils and staff.